VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON =-ETC §/6 9/2
CMS RATFOR USER®'S MANUAL . (V)

JA. 79 S M CHOGUETTE: R J ORGASS AFOSR-79-0021
VP!/SU—‘I’H-79—5 AFOSR=TR=80-0444

. f 19
/\TAFGSR TR-—- 8 ‘d ﬂ 444/ ' ' EXTENSION DIVISION

INIA POLYTECHNIC INSTITUTE AND S NIVERSITY 3
v P. O. Box 17186 ‘

Washingron, D. C. 20041

(703) 471-4600

' :CﬁyxﬁFCCH /¢y
10 Stephen M gﬁh“mette \1 AL T C

i Rlchard J. /brgass / C;(Ei

i
Ne)
Ne,
g f 7 TTecf;;;}:al emog#ndm No. 79-5/ JU“X % 930,
&S
T,
[~

DEPARTMENT OF COMPUTER SCIENCE
GRADUATE PROGRAM IN NORTHERN VIRGINIA

PRS0~ By R

A— s

- 1 ‘ July 1, 1979
r‘ L

e , ‘ | ;-
N, {\J/. Tl ABSTRACT /// = _/y'??/ C

RATFOR is a preprocessor for Fortran that provides modern
v <X control structures and a substantial improvement in the syntax
* of Fortran programs. The output of RATFOR is a Fortran program
‘ that is compiled by the Fortran processors and then executed.

i The RATFOR preprocessor provides statement grouping, IF-ELSE
i structures and four loops: DO, FOR, WHILE and REPEAT-UNTIL.

Y , RATFOR source text is free format with multiple statements
- on a line. Upper and lower case letters are treated as upper
case letters except in character constants. There is an include
facility so that large programs can be constructed out of a mul-
titude of small files without using the system editor. RATFOR
accepts files consisting of fz:jgzlength T?Ncolumn records with .

imbedded tatﬁ. v ¥ L(7’7A -7 /_, 5 1 |
.~ The program described here—fs an adaptatidnh of ‘thHe original’

RATFOR processor written at Bell Laboratories for use in the CMS
_ environment.

.

SRR LR e =

I

—_—\

~ This manual is a complete set of instructions for using the

¥ preprocessor. It includes a description of the RATFOR syntax, a

t % detailed explanation of the preprocessor error messages and direc-
& . tions for using the processor.FE: detailed description of the pre-
- .‘ o]

_—

processor, which is not needed r general users, is Technical
Memorandum No. 79-4 and may be' obtained from the second author at
the above address.
- S - —— — - G = — - - - - - —-— - —n G Gn - . W o= . . . -
* Research sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, under Grant No. AFOSR-
79-0021 The United States Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright notation hereon.

e
Eés + The information in this document is subject to change without
O
.l

notice. The authors, Virginia Polytechnic Institute and
State University, the Commonwealth of Virginia and the United
States Government assume no responsibility for errors that
t,'f:'.: may be present in this document or in the program described

nee: 8 O 6 1 1 O 2 2 Approved for public release;
| distribution unlinitod. .

.g et j L 754 Loww « Dulm lnerationsl Ayori—i0 Ve Jer

SRRV

el
%
1
¥

Copyright, 1979

by

Stephen M. Choquette
and

Richard J. Orgass

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-5, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the authors.

e n e vt e Ty (ARSC
AIR FO2T 01T T T v (AFSC)
NOT: | : e 0 oand is
§2;i S L e amw —s=12 (TD)e
Dis%re: et e ke
Ac D- Das eoea

Teghnicanl J...t wition officer

RATFOR User's Manual

* * % TABLE OF CONTENTS * * *

RATFOR Language Description

Summary of RATFOR Feature§ ---==-—=ccmeccvcccccccccnce=- 1
Description of RATFOR ~-==c--rercccccccccnccncccncccaea- 2
Quick Reference Guide to RATFOR -=-=scecccccmccemccecaaa 9
RATFOR Reference ---=-—=-ece~eccecccacaa e L e L L 12
Using RATFOR on CMS =--==-- e T T T O R R R 13
Sample Terminal Sessiong -~---vwcccccccccccecncccanccccnanaa- 14

RATFOR Error Megsages -—=-ecececccccccraecccec—ee= e e 15

Summary of RATFOR Features

With the growing concern for the cost of program development,
the computer industry has seen a shift towards programming lan-
guages that emphasize an organized approach to program develop-
ment. RATFOR is a new, rational approach to programming in FOR-
TRAN; the language offers RATFOR users the universality and
efficiency of FORTRAN, while providing decent program flow con-
trol structures. RATFOR, implemented as a preprocessor to FOR-
TRAN, offers the busy programmer statement grouping, IF-ELSE seg-
] menting, and DO, FOR, WHILE, and REPEAT-UNTIL loops. Additional

1 RATFOR features and keywords make code maintenance a less painful
task.

This paper is the User's Manual for the RATFOR preprocessor
. on the IBM CMS timesharing system. Included in this paper is a
language description of RATFOR, a discussion of how to use RATFOR
on CMS, sample terminal sessions and a detailed explanation of
the RATFOR error messages. Within the language description sec-
tion is a quick reference guide listing the keyword syntax and
RATFOR cosmetic features.

Accession For

NTIS ORI
DCC TAD

Unanmouaced
Justification

e

By
Distributioen/

vaiinbility Codes

|
i
?

A

\ Avalland/or
pist | epecial

Description of RATFOR

RATFOR is an attempt to hide the worst of FORTRANs defficien-
cies (primarily hard to understand code), while retaining the
advantages of the language (universality, portability, effi-
ciency). RATFOR offers the user powerful program flow control
statements without the FORTRAN necessities of GOTOs and labeled
statements. Additionally, the RATFOR language provides the user
with many "pretty print" features so that a program in RATFOR
would be easier to understand and maintain.

The remainder of the Language Description section will
explain both the syntactic and cosmetic features of RATFOR. The
program flow control structures are typical of the newer high
level programming languages. For a quick reference to RATFOR,
flip to the Quick Reference Guide at the end of the Language
Description section.

Statement Grouping

Often a programmer will want to group a sequence of state-
ments together for execution on a certain condition. Generally,
the programmer needs something to say "if some condition, do
these things." In RATFOR, statements can be grouped by enclosing
them within brackets. For example,

IF (A >= 1080)
{C=C+1
SUM = SUM + A
L=260
}

The. example above is a legal RATFOR program segment. Note that
the brackets denote a sequence of statements to execute when A >=
108. The brackets perform the same function as the PL/1 DO/END
sequence or the PASCAL BEGIN/END sequence.

To the avid FORTRAN programmer, a few things will stand out
in the above example. First, RATFOR allows free form input;
statements can occur in any column. When RATFOR encounters a
statement starting with an all-numeric field, the processor
assumes the field is a FORTRAN label and places it in columns 1-5
of the output. Next, the FORTRAN user will observe that 'D>=' is
not a legal FORTRAN boolean relational operator. RATFOR will
translate the more understandable relational operators
(>,>=,n=,{,<=,”,"=,§,|) into their FORTRAN equivalent. The last
observation the FORTRAN user will make is the semicolon. Being a
free form language, RATFOR allows more than one statement per
line. The additional statements must be separated by a semico-
lon. When only one statement is on a line, the semicolon is

rg

optional. Thus, the previous example could be written as
IF(A>=1008) {C=C+1;SUM=SUM+A;L=0;}

Obviously the first form is easier to understand. One final com-

ment is needed; when a statement is obviously not finished on

one line, RATFOR assumes it will be continued on the next line.
No character is needed in column 6.

ELSE Clauses

Occassionally the FORTRAN programmer will want to say "if
some condition, do these things, otherwise do these.” The ELSE
clause provides this option. Naturally the ELSE clause may be
left off. The full format of the IF statement is

IF (legal FORTRAN condition)
RATFOR statement

ELSE
RATFOR statement

The RATFOR statement can be in one of three forms: 1) a single
FORTRAN statement (no brackets needed), 2) a bracketed segment of
RATFOR and FORTRAN statements, or 3) another RATFOR keyword.

Notice that the third case allows us the option of nested
IFs. A legal sequence of RATFOR statements is

IF (A == B)
CTR1=CTR1+l
ELSE IF (A>B)
CTR2=CTR2+1
ELSE
CTR3=CTR3+1

Like many languages allowing the IF-ELSE construct, the ques-
tion arises of which IF does the ELSE match with. This ambiguity
is resolved by matching the ELSE with the last unmatched IF.
Because RATFOR allows free form input, the user should use inden-
tation to clarify the program listing.

The DO Statement

The RATFOR DO statement is very similar to the FORTRAN DO
gstatement.

The DO Statement

The major omission is the lack of a statement number. The format

ﬁ of the RATFOR DO statement is

DO legal-FORTRAN-DO-test
1 RATFOR statement

k As before, the RATFOR statement can be a single statement or a
; sequence of RATFOR statements in brackets. Since the RATFOR
_ statement can be another RATFOR statement, the following sequence
k ’ is legal.

IFP (A ~= B)
; PO I=1,5
| IF (SWITCH(i) == 1)
CTR1=CTR1+1
ELSE
; CTR2=CTR2+1

‘ Notice that in each case, a single RATFOR statement follows the
]

IF and DO statements. Occassionally brackets will help clarify
the listing, although they are not necessary.

The BREAK Keyword

The BREAK keyword provides a way of exiting a loop without
using the FORTRAN GOTO statement. BREAK can be followed by an
integer (BREAK N) specifying how many levels of looping to exit
from. The following sequence locates the first non-blank charac-
ter in a string array

DO I=1,80
IF (STRING(I) == BLANK) ;
BREAK ;

BREAK jumps to the statement after the end of the specified loop.
‘The NEXT Keyword'

LIke BREAK, the NEXT keyword provides a means of loop control
without the GOTO statement. NEXT jumps to the iteration step of
the specified loop. NEXT can also be followed by an integer
(NEXT N) giving the loop level to go to

DO I=1,80
{ IF (STR(I)==BLANK)
NEXT
}STR(I)-STAR

This sequence of code sets all non-blank characters in a string g

. Ty O

array to ‘'*', STAR is assumed defined above.

The WHILE Statement

WHILE provides a more powerful looping structure than the
simple DO loop. The syntax of the WHILE statement is

WHILE (legal FORTRAN condition)
RATFOR statement

Notice that the WHILE loop checks the FORTRAN condition at the
start of the loop so that the loop may be executed zero times.
The sequence

I=84
WHILE (STR(I) "=BLANK)
I=I+1

locates the last non-blank character in an input card of 88 char-
acters, Of course the NEXT and BREAK statements can occur within
a WHILE loop. The NEXT statement in a WHILE loop goes to the
test condition.

The FOR Statement

The FOR statement is yet another powerful RATFOR loop struc-
ture. The syntax of the FOR statement is

FOR (initial; condition; increment)
RATFOR statement

where initial is any one FORTRAN statement, condition is the
stopping condition and increment is the final step (a single
statement) in the loop. Any of the fields can be null so long as
the semicolon delimiter is present. Our last non-blank character
example above is

FOR (I=80; STR(I) "=BLANK; I=I-1)

1

Notice that the actual loop portion is the null statement. This
is because everything we will want to do is in the FOR statement.
As may be obvious by now, certain loop constructs work better in
different situations. Choose the best and simplest for your
work. The NEXT statement in a FOR loop goes to the increment
step of the loop.

The REPEAT-UNTIL Statements

Erb i R L

The REPEAT-UNTIL construct is the last loop control structure
in RATFOR. It provides a means of checking the exit condition at
the bottom of the loop. Recall that WHILE and FOR check at the
top of loops. The syntax of the statement is

REPEAT
RATFOR statement
UNTIL (legal FORTRAN condition)

The UNTIL is optional and, if omitted, provides an infinite loop.
Of course the programmer will want to get out of the loop using
BREAK, STOP, or RETURN. Caution should be used with the REPEAT-
UNTIL construct as it does not test for the null case.

The RETURN Statement

The standard FORTRAN RETURN mechanism uses the function name
to return a value. This is allowable in RATFOR as well as
expressions of the form

RETURN (value)

If there are no parentheses, a normal RETURN is made.

The DEFINE Statement

The DEFINE statement is not an executed RATFOR statement; no
FORTRAN code is generated. The statement allows the user to
create program definitions to make his program more understand-
able. The syntax is

DEFINE (name, definition)
or
DEFINE name, definition

Every occurrence of name in the user source code is immediately
replaced by the definition. Optimally, DEFINEs should be at the
start of the source code to clarify their use. The name portion
can be arbitrarily long and must start with a letter. The DEFINE
statement can be used to define global constants as follows

DEFINE (YES,1)
DEFINE (NO,0)

qith the above statements, we can now say

IF (ISMTQ ==])
RETURN (YES)
ELSE
RETURN (NO)

The INCLUDE Statement

The INCLUDE statement inserts files directly in the RATFOR
source code input. The statement

INCLUDE RATCMN

inserts the CMS file RATCMN (possibly containing COMMON blocks)
into the user source code in place of the INCLUDE statement.
Thus, the programmer would type the program COMMON blocks once
into the RATCMN file and then, in each subroutine needing the
COMMON blocks, insert "INCLUDE RATCMN." Of course changes to the
RATCMN file would affect every subroutine having the INCLUDE
statement. The syntax of the statement is

INCLUDE FN FT FM

Where FN is the CMS file name (8 characters maximum), FT the CMS
file type (optional - Default RATFOR), and FM the CMS file mode
(optional - Default Al).

RATFOR Cosmetic Features

As mentioned before, RATFOR provides many cosmetic features
to allow the user a sharp looking listing. In addition to a
sharper listing, the use of cosmetics makes the source listing
more readable and easier to maintain.

First, RATFOR allows free format input. Statements can occur
anywhere on a line. If more than one statement is on a line,
they must be separated by a semicolon. Blank lines are ignored.
The user need not worry about a long statement continuing to a
new card; RATFOR can make a fair estimate whether the statement
is a continuation. Lines ending with any of the characters

=+ - * | & (

are assumed to be continued on the next line.

The next cosmetic feature is RATFOR commenting. Comments
start with a # and can occur anywhere in a line. Thus, comments
can occur next to source statements. Comments are assumed to
continue until the end of the card.

RATFOR will perform translation services for the user when-
ever they are needed, excepting within single or double quotes:

R o

to .eq. "= to .ne.

> to .gt. >= to .ge.

< to .lt. <= to .le.
; & to .and. | to .or.
] 1 to .not. ~ to .not.

Additionally, the statement grouping brackets can be either { and
}e [and 1, or $(and §).

i One important cosmetic feature is that RATFOR input can be in
upper and lower case. Anything not within single or double
guotes is translated to upper case for the CMS FORTRAN compiler.

Lastly, text within matching single or double guotes is con-
verted to its Hollerith equivalent ('string'=6Hstring). Within
quoted strings, the backslash '\' serves as an escape character;
the next character is taken literally. This way a single quote
can be entered as "\'" .

e L R et

Quick Reference Guide to RATFOR

(Keyword Syntci)

BREAK keyword
BREAK N (N=1 by default)

Exits from N levels of enclosing loops.

DEFINE statement
DEFINE (defined name, defined value)

or
DEFINE defined name, defined value

Defined name may be arbitrarily long & must start with
a letter.
DO statement
DO 1legal-FORTRAN-DO-test
RATFOR statement
FOR statement

FOR (initial; condition; increment)
RATFOR statement

Initial - any single FORTRAN statement
Condition - any legal RATFOR condition
Increment - any single FORTRAN statement

IF statement

IF (legal FORTRAN condition)
RATFOR statement

ELSE
RATFOR statement

The ELSE is optional and is matched with the last IF.

INCLUDE statement
INCLUDE FN FT FM

FN - CMS file name (8 characters maximum)

FT - CMS file type (Optional - Default RATFOR)
FM - CMS file mode (Optional - Default Al)

NEXT keyword

NEXT N (N=1 by default)

Branches to next iteration of Nth loop.

REPEAT-UNTIL statements

REPEAT
RATFOR statement
UNTIL (legal FORTRAN condition)

RETURN

RETURN (expression)

WHILE statement

WHILE (legal FORTRAN condition)
RATFOR statement

*** A RATFOR statement can be any of the following:
1. A single FORTRAN statement.
2. A bracketed set of statements.
3. Any of the RATFOR statements just described.

-19-

Tt

Quick Reference Guide to RATFOR

(Cosmetics)

Free form input (ie. spacing is not important).

Lines ending with = + - * , / | & (are assumed to be
continued. No continuation signaler is needed.

Statements beginining with an all-numeric field is assumed to
be a FORTRAN label and is placed in columns 1-5 of the output.

Strings in matching single or double quotes are converted to
Hollerith form ('string'=6Hstring).

Statement grouping using either { and }, [and], or $(and $).
Comments beginning anywhere in the input, denoted by #.

Translation services

== to .eq. “= to .ne.
> to .gt. >= to .ge.
< to .lt. <= to .le.
& to .and. | to .or.

to .not.

T A

EIEiE s i e

Kernighan, Brian W.

RATFOR Reference

"RATFOR -~ A Preprocessor for a Rational

FORTRAN", Bell Laboratories Technical Report 55,

January 1, 1977.

Using RATFOR on CMS

Running a program through the CMS RATFOR preprocessor is a
very simple task. All the user has to do is to type "RATFOR".
The system will then ask for the name of the RATFOR file to be
processed; the file type must be RATFOR. The user file is then
translated to legal FORTRAN, possibly with error messages being
flagged by RATFOR. If errors are present, the system will list
the error messages on the terminal. Detailed explanations of the
RATFOR error messages can be found later in this User's Manual.

If the user program is free of RATFOR errors, it is then com-
piled using the CMS FORTGI compiler. The compiler flags any
illegal FORTRAN statements. The result of the entire RATFOR pro-
cess is a TEXT file having the same file name as the original
user RATFOR program. This TEXT file can be run like any other
CMS TEXT file.

While on CMS, if any questions arise as to how to use the
RATFOR preprocessor, type "RATFOR ?". The system will respond
with a description similar to the one just given. If this does
not suffice, follow the sample terminal sessions given later in
this document.

Please note that the RATFOR preprocessor may be slow, depend-
ing on the length of the user program. Have patience, the pre-
processor is not stuck in a loop.

All of the executable files for RATFOR are on the A disk
of CMS userid CSDULLES. To gain access to these files, enter the
following CMS commands:

cp link csdulles 191 333 read all
access 333 g/a ’

P A —————

Sample Terminal Sessions

'S Prompts the user for a response

*** Normal Terminal Session ***

>RATFOR
##% RATFOR COMPILER ***

>

ENTER NAME OF RATFOR FILE:
>TEST

NO RATFOR MESSAGES FOR TEXT

Gl COMPILER ENTERED

SOURCE ANALYZED

PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED

*** Tarminal Session with RATFOR errors ***

>RATFOR
% RATFOR COMPILER ***

ENTER NAME OF RATFOR FILE:
>BAD

RATFOR MESSAGES FOR BAD

? error at line 2:
25-Unexpected EOF.

The next step is to look up Error Message 25 in the
User's Manual for a detailed explanation of the problenm.

*** Terminal Session asking for help ***

>RATFOR ?
##% RATFOR COMPILER ***

(Explanation of RATFOR preprocessor)

RATFOR Error Messages
Explanations & Corrections

r *0l-Missing Left Paren."

{ Meaning: A left parenthesis was missing starting an IF,
{ WHILE, or UNTIL statement.
Correction: Check to ensure that all parentheses are
balanced.

“92-Missing Parenthesis in Condition."

Meaning: The parser encountered unbalanced parentheses
in an IF, WHILE or UNTIL conditional state-
ment.

i Correction: Check to ensure that all parentheses are
: balanced within the conditional.

L "@3-Illegal BREAK.”

Meaning: An attempt was made to either generate code
for the BREAK statement outside of a loop or
to transfer control outside of an illegal num~
ber of loops (N too high on "BREAK N").

Correction: Make sure the BREAK statement occurs within a
loop. Check the level of the BREAK with the
level of looping.

"P4-Illegal NEXT."

Meaning: An attempt was made to either generate code
for the NEXT statement while not in a loop, or
to transfer control through too many levels of
looping (N too high on “NEXT N").

Correction: Make sure the NEXT statement occurs within a
loop. Check the level of the NEXT with the
level of looping.

*85-Unexpected EOF."
Meaning: The parser was expecting more of the input

card when an end of file condition occurred.
Correction: Check for unfinished continuation cards.

“96-Unbalanced parentheses."

Meaning:

Correction:

RATFOR Error Messages
Explanations & Corrections

The parser encountered unbalanced parentheses
in an IF, WHILE, or UNTIL statement.

Check to ensure that all parentheses are
balanced within the statement.

"@7-Missing left paren in FOR statement."

Meaning:

Correction:

A left parenthesis was expected at the start
of the FOR statement.

Make sure all necessary parentheses are pre-
sent,

"9#8-Unbalanced parentheses in FOR clause."

Meaning:

Correction:

"99-FOR clause too
Meaning:

Correction:

Unbalanced parentheses were encountered while
parsing the FOR statement.

Check to see that the FOR statement has a
balanced number of parentheses.

long."

The specified FOR clause was longer than the
maximum length (currently 2060 characters).
Where possible, break the FOR clause into
smaller pieces.

"l0-Non-Alphanumeric name in DEFINE."

Meaning:

Correction:

*ll-pefinition too

Meaning:

Correction:

The name gpecified in the DEFINE statement had
a non-alphanumeric character in it.

Correct the DEFINE to be composed of numbers
and letters only.

long."”

The specified definition was longer than the
maximum definition size (currently 286 charac-
ters).

Choose a smaller definition.

RATFOR Error Messages
Explanations & Corrections

"12-Missing comma in DEFINE."

Meaning: The form of the DEFINE statement having paren-
theses also has a comma between the name and
definition.

Correction: Add the necessary comma.

*"13-Missing right paren in DEFINE."

Meaning: A definition starting with a left parenthesis
did not have a matching right parenthesis.
Correction: Add the necessary right parenthesis.

' "14-GETDEF is confused."

Meaning: An unexpected token was found in the DEFINE
statement.
Correction: Correct the DEFINE statement according to the

rules specified in the language description.

"15-INCLUDEs nested too deeply."

Meaning: More than 92 user-nested INCLUDE files were
opened concurrently.

3 Correction: 99 is the maximum number of concurrent FILE=-

: DEFs allowed by CMS for a FORTRAN file (user-
defined files start with unit number 7).
Check your program for recursion - since this ;
is not check for, an infinite INCLUDE loop may :
have occurred.

"l6-Specified file does not exist."

Meaning: The file specified in the INCLUDE statement
does not exist.
Correction: Check to make sure the file name, file type

(Default RATFOR), and file mode (Default Al)
were spelled correctly.

RATFOR Error Messages
Explanations & Corrections

"l17-Error in defining file."

Meaning: The CMS FILEDEF statement did not execute cor-
rectly. The specified file was not included.
Correction: Make sure your INCLUDE statement did not

include any CMS unprintable characters within
the file name.

"18-Token too long.”

Meaning: The input token was 1longer than the maximum
token length (currently 288 characters).

Correction: Shorten the token to something within the
length boundary. i

"l9-Missing Quote in string."

Meaning: The string in error was missing its terminat-
ing quote mark.

Correction: Add the required gquote mark and resubmit the
program.

"20-Too many definitions.”

Meaning: Too many DEFINE statements were encountered.
Correction: Cut the number of DEFINEs down to the current
maximum (6500 characters in all definitions).

"2l-warning: Possible label conflict."

Meaning: A user~defined label may conflict with a RAT-
FOR-generated label.

Correction: Generally RATFOR-generated labels are of the
form 23XXX. If a conflict occurs, choose
another user label.

L i

"22-Illegal ELSE."
Meaning:

Correction:

*23-Stack overflow
Meaning:

Correction:

RATFOR Error Messages
Explanations & Corrections

An ELSE was encountered that did not have a
matching IF statement.

Check to ensure that every ELSE has an associ-
ated IF statement.

in parser."

An attempt was made to add too many tokens to
the parser stack.

Send a copy of your RATFOR file to Dick Orgass
- CMS userid ORGASS, along with an explanation
of the problem encountered.

"24~Illegal right brace."

Meaning:

Correction:

A right brace was encountered that did not
have a matching left brace.

Ensure that all left braces have a matching
number of right braces.

"25-Unexpected EOF."

Meaning:

Correction:

The parser was expecting more symbols (possi-
bly loop terminators or brackets) when an end
of file condition occurred.

Make sure that all loops are in accordance

. with the language description and that every

left bracket has a matching right bracket.

"26-Too many characters pushed back."

Meaning:

Correction:

An attempt was made to push more characters on
the input buffer than was allowed.

Send your RATFOR source to Dick Orgass - CMS
userid ORGASS, along with an explanation of
the problem encountered.

R R

M L

LRy

APPENDIX

On Line - Help File

——

RATFOR

A Rational Alternative to Fortran

RATFOR is a fairly popular preprocessor for Fortran. It pro-
vides modern control structures as well as a pleasant syntax for
Fortran programs. Many of the truly irritating syntactical con-
ventions of Fortran are avoided in RATFOR and the resulting For-
tran code is of good quality. Note that RATFOR will not write
any non-standard Fortran unless you write it into the program
directly.

Any of the published documentation on RATFOR combined with the
material in this file is adequate to use the preprocessor. CMS
RATFOR differs from other versions in that lower case letters are
mapped into upper case letters except in quoted strings and Hol-
lerith constants. Both single and double quotes may open a
quoted string; the next occurrence of the same quote ends the
string. Detailed documentaton for this CMS implementation may be
obtained by contacting:

Richard J. Orgass

Department of Computer Science
VPI&SU

P. O. Box 17186

Washington, D.C. 200641

CMS userid: ORGASS
Please specify if you want the user's manual or the systems
manual. The latter is designed for readers who wish to modify

the preprocessor and does not contain information that is needed
by general users.

Using RATFOR

The RATFOR preprocessor accepts input files with fixed length
records and 88 column record length, Tabs are equivalent to
blanks so that tabs can be used to provide indented program text
that visually extends beyond column 80.

Input files to RATFOR must be of file type RATFOR and located
on the user's A disk or a read only extension of this disk. If
you have created a file <fn> RATFOR, this file can be converted
into a text file for execution by executing the command:

ratfor <fn>
This will invoke the RATFOR processor and then the Fortran G com-

piler. 1If there are no errors, only a file <fn> TEXT will be
produced.

[REUpv—

If there are RATFOR errors, error messages will be printed on
the terminal and written to file <fn> ERROR. The Fortran compi-
ler will not be invoked.

If there are no RATFOR errors but there are Fortran errors, at
least two additional files will be produced: <fn> FORTRAN and
<fn> LISTING. [There may also be a file <fn> TEXT if one is pro-
duced by PFortran.] The listing file will only contain error mes-
sages and not the complete text of the program.

Note that the Fortran files produced by RATFOR are very diffi-
cult to read; there are no comments and no redundant spaces.
These files are only intended for compilation and not for human
consumption.

Entering the command:

ratfor ?

will print this text on your terminal.

Additional Options

Executing the command:
ratforh <fn>

will invoke the Fortran H compiler instead of the Fortran G com-
piler to translate the RATFOR program into executable code.

Executing the command:
ratno <fn>

will invoke the RATFOR preprocessor and will not subsequently
invoke any Fortran compiler. If there are no RATFOR detected
errors, a single file, <fn> FORTRAN will be created; it contains
the Fortran that corresponds to the input RATFOR. If RATFOR
detects errors, error messages will be written on the terminal
and into file <fn> ERROR.

Both of these commands accept ? as an argument to print this
text.

Availability

All of the files needed to use RATFOR are part of the public
library of the Computer Science Graduate Program in Northern Vir-
gina. This library is the A disk of userid CSDULLES. To use
RATFOR, execute the following commands:

cp link csdulles 191 33¢ read all
access 330 e/a

The RATFOR processor assumes that this disk is a read only exten-

sion of your A disk; it will not function correctly if this is
not the case!

Relevant Files

The following files, located on the A disk of CSDULLES are
part of the RATFOR processor:

RAT MODULE
RATFOR EXEC
RATFORH EXEC
RATNO EXEC
QUERYFIL EXEC
RATFOR HELP

The RATFOR source for the preprocessor is available to indivi-
duals who might wish to modify the program for their own use.
Please contact userid ORGASS if you wish to secure a copy of the
source code.

